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Two problems of plane strain of an elastic infinite wedge reinforced by an infi- 
nite constant-thickness beam are considered, In the first problem the beam is 
welded to the wedge along the bissectrix and is in complete contact with it. A 
longit~inal force, a transverse force, and a bending moment are applied to the 
end of the beam and arbitrary normal and tangential stresses are given on the 
boundary surfaces of the wedge. In the second problem, the beam is in contact 
without friction with one face of the wedge, arbitrary stress resultants act on both 
the wedge and the beam. Both problems are reduced to first-order difference 
equations and are solved in closed form. 

1. In an elastic wedge let 0 < r < 00, - a < 8 < CL, an elastic beam 2h. 
thick (Fig. 1) is welded along the 8 = 0 axis, and the contact surfaces of the wedge 
and beam. are connected completely. A longitudinal tensile force 2T, a bending mo- 
ment 244, a transverse force 2P or another load causing equivalent stress resultants 
at the point r=O of the beam act on the free part of the beam 0 = rc . Concentrated 
forces, a normal 2% and tangential 2s , are applied to the wedge at its ‘face 9 := CI. 
as an arbitrary load. 



Let us divide the given load into a symmetric and antisymmetric load. Then because 
of the ~mrne~ of the elastic domain, the solution of the problem formulated can be 

El represented as the sum of solutions : (a) of the 
problem for half the wedge () < 8 < a rein- 

forced by a rod of thickness h under the condi- 

tions 

U (r, 0) = 0, Eh aznj_@; O) f (1.1) 

Co 

r,s (r, 0) = 0, 
I 
’ ~,e (r, 0) dr -- T 

0 

Qg (r, a) = N6 (r - a), 0.2) 

Z,g (r, a) = 5% (r -- b) 

and (b) the problem for the same wedge under the 
Fig. 1 conditions (1.2) and 

m m 

u(r,O) =o, 
s 
’ G@ (r, 0) Br = P, l 

\ 
6fJ(1”, 0) rdr = M - Pi? (1.3) 

0 0 

D 8% (r, 0) 
W 

-- bg (r, 0) = 0, D = Eh3 
3 (1 -I”%) 

(1.4) 

Here E and p are the elastic modulus and Poisson’s ratio of the beam and 6 (r) ,is the 
Dirac delta function. 

Taking into account the general condition (1.2). we shall seek the solution of both 
problems in the form of Mellin integrals [l J 

A,* = cos 2ptx + p cos 2a, AR,* =--: sin 2pa -& p sin 2a 

where x = 3---4v, c and Y are the shear modulus and Poisson’s ratio of the wedge, 

respectively. In order for displacements at the point r = 0 to be bounded, we take the 
line Re p = h, - ‘f4. < h < 0 as L. 

Let us consider problem (a). It foltows from the first condition (1.1) and from (1.5) 
that 

Z?(p) ‘= (AZ+)-$4 (p)(A1+ - p _t 1~) - NaPp-' sin (11 - l)a f 0.61 

Sb”p-’ cos (p I- 1)cxl 
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Substituting (1.5), (1.6) into the second condition of (1. l), we obtain 

F (14 = 
BhpA3 

2G (1 f x) A; ’ 
A3 = 4x sin” pu + 4~” sin* a - (1 f x)s 

sbp cos (p - l)~] - NUP cos (p - 1) a + SbPsin (P - 1) a 

where L, is the line Re p = h - 1. We assume that the function pA (p) is (1) re- 

gular and (2) tends to zero in the strip h < Re? < h $- 1 as 1 Im p [ -F 00 .Then 

by the Cauchy theorem, without altering the integrand, L can be written in (1.7)instead 
of .& and it can be satisfied by solving the first-order difference equation 

A (P + 1) = F (PP (P) + f (P) (1.8) 

Similar boundary value problems in polar coordinates with boundary conditions ofthe 

third kind have been reduced to difference equations in [Z-5]. and others. 

According to the general solution of (1.8) [6], for 5’ = N = 0, i.e. for f (p) = 0 

m l’ (a, + p) I’ (1 + b, - p) bEp-1 

k=lr(b,+~ff (1-k ak-~bakP_l 
(1.9) 

c = l/gt (1 + x)-IT 

Here r (p) is the gamma function, ah and 6,< are the zeros and poles of the function 

F (p) which are in the half-plane Re p > 0, the constant c ls determined from the 
third condition in (1.1) whose left side is the Mellin transform of the function ~,.a (r, 0) 

equal to (1 + x)pA (p). An arbitrary periodic function, sin-rnp in this case, is selec- 
ted from conditions (1) and (2). Using the Stirling formula, the absolute convergence 

and algebraic growth of the infinite product (1.9) in the strip 3; < He p < h t 1 
can be given a foundation. Therefore, conditions (1) and (2) are satisfied, IA (?L + ifi> = 

0 ( 1 p $e-xIPI), h t e integrals (1.5) converge absolutely and uniformly in the whole elas- 

tic domain up to its left boundary. 
The stresses Z,,J (r, 0) at the angular point r = 0 of the wedge are characterized 

by the residue at the first pole of the function A (F) to the left of L. For a < a* they 

are finite, for a = a* they have a logarithmic, and for a > a* a power-law rclp.1 sin- 
-- 

gularlty . Tables of the values of a, and the formula a* = arc sin J/ 1 - v are pre- 
sented on page 149 in the monograph Cl]. 

Recently, a new canonical solution of remarkable simplicity and efficiency has been 

found in [S] for the homogeneous equation (1.8). In this case,withsome supplementation 
it acquires the following form : 
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A,(P) - QPc~s-~(~l~np)l'(p)X (p), Q = EhxIG (1 + x)1-' (1.10) 

X(p) = K-Yp)Y (p) (- 1 < Re p < (9, x (P) = y (P) 

(0 < Re P 6 1) 

Y(p) = exp {-$- ‘( ctg n (t - p) In K (t) dl] 

F (PI K(p)= - QP t&q 

In contrast to (1.9), firstly it is not necessary to evaluate the poles and zeros of the 

function F (p) here, and secondly, the integral (1.10) has exponential convergence and 
the infinite product (1.9) is just a power-law. However, the complete solution in [S] is 

awkward and expressed in triple rather than double integrals because of the reductionof 
the homogeneous problem of elasticity theory to an inhomogeneous difference equation 

(the force is applied only to the end of the rod in [5], i.e. N. = 5’ = 0) . Hence, the 

method of (1.5) - (1.Q (1. lo), which is also applicable to three-dimensional problems, 
clearly yields the most economical solution. 

Let us turn to the inhomogeneous equation (1.8) and write its solution in the form 

A (p) = A,(p)lC + COS np .z (PII 

Substituting (1.11) into (1.8). we obtain the difference equation 

which has the solution 

2 (P) = w (P) 

2 (p t 1) = - 2 (PI - g (P) 

- g(p) (-- 1 < Re P < (9, 2 (p) =z 

@<Rep 

r(t)& 

by virtue of the Sokhotskii-Plemelj formulas. 

From the third condition in (1.1) 

lim {(I t x) PA,, (p)lC _I~ cos np Z (p)J} -: 2’ 
PA 

and from (1.10). we obtain 

c : T (1 + x)-1X-‘(O) - 2 (0) 

(1.11) 

(1.12) 

w (P) (1.13) 

< 1) 

(1.14) 

The validity of conditions (1) and (2) follows from the properties of Cauchy-type integ- 
rals and from the estimate lf (h, $- ip) 1 = 0 (Ip Ie:-alPi) for ?L < 3L1 <. h + 1. 

The inhomogeneous equation is solved by another method in [S]. 
Let us examine problem (b). By virtue of the first condition in (1.3) 

_A (P) = - (A,-)-‘[B (p)(A1- + p + SC) + Na”p-’ cos (p- 1)~ - 
ShPp-l sin (p - 1)al 

By analogy with (1.7), condition (1.4) can be written as 
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-&’ (P+3)B(P+3b$== 0 
z 

zqp) xz qp(/, .+ 1)~ + 2), F.&I) == - &(2xh,-)-‘, Q =-- ZIG-W t x)-l 

f (p) = l/~~-‘(~ -+ l)(p + Z){KsaP COS fp - l)a - 

S@‘sin (p - l)c~l(A,-)-~ + iL’ap sin (p - ~)CC $- h’@ COS (p - l)a} 

Here the contour L, is the line Re p := 3L - 3. If the integrand in the second integ- 
ral in (1.15) satisfies conditions (1) and (2) in the strip h - 3 < Re p \< h, then the 

contour L, can again be shifted and the following difference equation can be obtained 

on L 
B (P 5 3) I-; ~~(~)~~(~)~ (Pf + f (a> (-1.16) 

Finding the canonical solution B,, (p) of the homogeneous equation (1.16) with coeffi- 

cient F, (p) by the Barnes method [6], with the coefficient F2 (p) by the method of 

Bantsuri [S], we obtain 

&l w = 0 ‘i*P sin 3 r (p) X (p) (1.17) 

x (JI) = K-I (p) Y (p) (- 3 < Re p < O), X !P 1 = Y (P) 
(0 < Re p < 3) 

Y(p) = exp {.$ f ctg n (t T I’) In K (t) dt) 
--im 

K(p) = F,(p) tgq- 
The canonical solution Bra(p) of the homogeneous equation 

&(P + 3) = - MWz b)&(p) 

is expressed by the formula B,,fP ) = B&f cos (‘/, np). Taking into account the 

constraints (l), (2) and the beam equilibrium conditions (1.3), the general solution of the 
inhomogeneous equation (1.16) is written as 

B (PI = BO (P) (c* ctg ?$ + G) + &O (14 2 (P) ctg 3 (1.18) 

Substituting (I. 18) into (1.16), we obtain 

z(p+3)=---Z+-g(fp), s(p) = --R;~(p+3)I(p)tg~(l.l9) 

Analogously to the solution (1.13) 

2 (P) = w (PI - g (I.4 7 (- 3 < Rep < 01, (1.20) 

2 (p) = W (~1 (0 < Re P < 3) 
iw 

W(P) = -& \ g VI dt _ 
sin l/an (t - p) 

--ice 

The integral conditions (1.3) whose left sides are the transforms of the function 



0s (r, 0) at the points p = 0 and p =y 3, yield the following two equations to eva- 
luate the constants C, and c,: 

r/a (1 + x)X (O)[C, + ZCO)l =i: - P 

l/s (1. + 4 Ql’sY (1) -++c,.~]=Pl-M 

Verifying conditions (1) and (2) causes no difficulties here because of the exponential 

decrease in the functions g (p) and R (p)as IIm p 1 -+ CO . 
The nature of the stresses RJ (r, 0) at the angular point of the wedge is determined 

by the residue of the function (1 + z)~r-@B (p) at the first pole to the left of L. 
Since the zeros of the functions ~~(~~ and F (p) coincide, oe (r, 0) = 0, (tat-l) 
for CC > a* as in problem (a). 

2. We consider a more complex version of the load applied to the beam in the con- 
tact zone. Let the elastic wedge 0 < 8 < a be reinforced by a beam slab of constant 

thickness h on the 8 = 0 side (Fig. 2). 
There is no friction between the beam and 

the wedge, the free parts of the wedge 8 = 

a and the beam 8 = n are loaded as in 

8-a: 
problem (b). and the normal force ?’ acts 

on the beam at the point r = c, 0 -= 0 . 
This problem is determined by conditions 

(1.2) and the conditions 

Zrs (r, 0) = 0, D1 pvf~o) - CL11 

be (r, 0) = IV (r - C), DI = 12 (sil_” pj, 

a, cc 

s 
60 (r, 0) dr = P - T, 

s 
bg (r,O)rdr = M - PI - Tc (2.2) 

0 0 

Let us seek its solution in the form (1.5) where by virtue of (2.1) 

B (p) = (h.,t‘p)-IfA (~)~(A~ - p - 1) - iYaP sin (p - I)a Jr 

Sbp cos (p - l)al 

the function A,(p) should satisfy conditions (1) and (2) in the strip J_ < Re p \( h + 
3 and the difference equation 

-Jj,(P -I- 3) =-= F,(p)F,@ JAI(p) -5 f (PI (2.3) 
on the contour L . Here 

A,(P) = 2F,-‘(p)[pA(p) - f (P)], F,(p) -= Q (p + l)(P + 2) (P -t 3)*@*4) 

Q = 1/4 L),G-l(l -t_ x), E,(p) == l/2Ac A4-t, A, -1 sin2 pa - p” sin2 a 

f (p) = 1/4 A,-‘{(A,- + p - l)INaP sin (p - I)a - SF eos (p - l)al - 

A,+lNaP cos (p - 1)a - SbP sin (p - I)a} - TcP+~- 

Just as (1.8). the solution of the problem (2.3) is 
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Al (p) = AlO (p) [Cl ctg F + c, + 2 (p) cos y ctg ?_I (2.5) 

Alo (p) = Q’/~P sin y I? (p + 1) X (p) 

Here the function X (p) is expressed by the formulas (1.17), F, (p) and Q by (2.4), 
the function 2 (p) has the form (1.20). where 

g (p> = tg ?/a np)f (p&4,, (P t 3) cos (‘/s 3cp)I-1 (2.6) 

From the conditions (2.2) we obtain 

c = Z(P-T)--(O) , czr: 2(~~f--P~-T4 TV(i) 
1 

x (0) Q'!"Y (I) 
--g.- 

2y’5 

The presence of a load on the beam makes the function f (p) nondecreasing at infi- 

nity in the strip h < Re p \< h f- 3 (due to the component l’cPiL”) and requires a 

stricter estimate of the function A 1 (p) for the verification of condition (2). If Re p > 

0, then according to (2.5) and (1,20), the function X (p) and ,ci, (p) as well decrease 
exponentially when 1 Im p 1 --f co. If He p 6 0, then the result required follows 

from (2.4)- (2.6) and (1.20) 

f A, (q3 + A,) 1 = I A,, (if3 -I- &)A1,-l ($ t A, + 3) 10 (1) = 

0 t I P I -“) @I < 0) 

In this problem a* = f/s n. For a < a* we have be (0, 0) = 0 (I), for M > 

a* and r -+ 0 we have @% (r, 0) =I 0 (r”l-l), where ~1 is the first positive zero of 

the function AZ+, If a= XC, “/.2 ?t, &,then a, = 1/2, I! 13, i/4 , respectively. 

For a half-plane, the considered problem is solved for CL = m by another method in 
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